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Introduction

• Is there a relation between topology and confinement ?

As for the instanton liquid model, obviously not :

no string tension, violation of Casimir scaling;

see, however, J. Negele’s talk

• What other d.o.f. might be important ?

Kovacs: both instantons and holonomies must be extracted

from lattice in order to reconstruct hadronic correlators

• Who needs fractional instantons (instanton ”quarks”) ?

1. 2D σ-model (Fateev, Frolov, Schwarz),

2. instantons → merons in YM (Callan, Dashen, Gross),

3. instanton melting in CPN−1 model (Diakonov et al.)

4. in N = 1 Susy YM : gluino condensation/confinement by

fractional instantons (Davies et al. [1999]; Diakonov and

Petrov [2003])



• Are fractional instanton solutions known ?

No. Only as constituents of finite T instantons:

calorons with non-trivial holonomy, generically composed of

monopoles (dyons) of size 1/(πT )

KvBLL solutions, due to T. C. Kraan and P. van Baal (1998),

K. Lee and C. Lu (1998)

The holonomy (Polyakov loop) determines the distribution of

action (topological charge) among constituents.

• Can dissociating calorons cause the onset of confinement ?

A gas of dyons reacting to the background Polyakov loop

(order parameter) would do it.

(Diakonov, Prog. Part. Nucl. Phys. 51, p. 173 [2003])

Certainly beyond semiclassics !



• To what extent can calorons be semiclassically dealt with ?

Diakonov et al. (hep-th/0404042) have semiclassically shown:

SU(2) calorons become unstable w.r.t. decay into dyons at Tdec



What to do on the lattice ?

• Study properties of classical solutions in finite volume,

(varying Lt/Ls), overlap effects of constituents

(with and without twist) :

increasing overlap → nonstatic solutions

paper with P. van Baal, F. Bruckmann and B. Martemyanov in

preparation (for SU(2)), talk by F. Bruckmann

Work done at HU Berlin mostly for SU(3) solutions.

• A dynamical caloron mechanism at the confinement transition ?

1. Suggestive support for this picture by Gattringer and

Schaefer (for equilibrium configurations) :

the fermionic zero mode for Q = ±1 configurations is found

either pinned down in deconfinement or jumping with

changing b.c. (ζ) in confinement.

Jumping and localization of the zero mode follow the

caloron-type pattern.



APE smearing : topological density supports the zero mode

for all ζ. Dyonic interpretation so far not conclusive.

2. We propose in the result of study of SU(3) calorons and

equilibrium configurations :

look for the magnetic charge content of topological clusters

in the temperature range around the deconfinement

transition, in this way identifying clusters as

dissociated/nondissociated calorons

(paper for SU(2) in preparation, with B. Martemyanov)



Generalities on SU(3) calorons

A simple formula for the SU(n) caloron’s action (= ± topological)

density :

Tr F 2
αβ(x) = ∂2

α∂
2
β logψ(x), ψ(x) =

1

2
tr(An · · · A1)− cos(2πt)

Am =
1

rm

rm |~ρm+1|

0 rm+1

cosh(2πνmrm) sinh(2πνmrm)

sinh(2πνmrm) cosh(2πνmrm)


with

rm = |~x− ~ym|, ~ρm = ~ym − ~ym−1, νm = µm − µm−1

here

b = 1/T = 1



Ingredients

Asymptotic holonomy :

P0
∞ = diag

(
e2πiµm

)
,

n∑
m=1

µm = 0

Eigenvalues ordered as

µ1 < µ2 < .. < µn < µn+1 = 1 + µ1

Positions of constituents monopoles :

~y1, ~y2, ....., ~yn

Actions (topological charges) of constituent monopoles :

Sm = νm Sinst



Fermion zero mode according to Atiyah-Singer index theorem,

endowed with ad-hoc varied periodicity :

Ψζ(t+ b, ~x) = e2πiζ Ψζ(t, ~x)

Jumping and delocalization of zero mode :

if ζ ∈ [µm, µm+1] → |Ψζ(x)|2 localized at ~ym

if ζ ≈ µm → |Ψζ(x)|2 becomes delocalized

Interior structure of the Polyakov loop :

Holonomies at the constituents’ positions ~zm (for SU(3))

P(~z1) = diag
(
e−πiµ3 , e−πiµ3 , e2πiµ3

)
P(~z2) = diag

(
e2πiµ1 , e−πiµ1 , e−πiµ1

)
P(~z3) = diag

(
−e−πiµ2 , e2πiµ2 ,−e−πiµ2

)



For well-separated constituents : all ~zm → ~ym.

Questions :

• How good is this realized on a lattice, i.e. in a finite volume ?

• What can we learn about solutions of higher topological charge ?



Lattice examples

Configurations are characterized, besides by action S = N 8π2

g2
and

topological charge Q = ±N , by

• landscape in holonomy space (asymptotic and interior holonomy)

• correlation (locally) between action density and holonomy

• separation of constituents in space

• (related to) staticicity

Cooling

All studied solutions have been obatined by cooling from

Monte Carlo samples in confinement,

applying stopping criteria triggering on

• minimal violation of equations of motion

• maximal staticity



actually with constraints on violation of [anti-]selfduality

δF =
∑
x

∣∣F aµν(x)F aµν(x)− ∣∣F aµν(x)F̃ aµν(x)∣∣ ∣∣/S



A Q = 1 caloron on a 203 × 4 lattice
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Figure 1: Holonomy eigenphases vs. action density (upper left), Polyakov loop scatter plot
(upper right), action density (bottom left) and magnetic monopoles (bottom right).
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Figure 2: Q = 1 caloron on 203 × 4 : Spectral flow (upper left), inverse participation ratio
(upper right), action density (bottom left) and zeromodes (bottom right) with ζ corr.
to maximal localization.



Zero mode jumping in a static |Q| = 1 caloron on 123 × 4 :
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Figure 3: Jumping zero mode (ζ = 0.1 left and ζ = 0.4 right) of a static caloron
with two well-separable constituents.



No zero mode jumping in a non-static |Q| = 1 caloron on 123 × 4 :
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Figure 4: Zero mode not jumping (ζ = 0.1 left and ζ = 0.4 right) of a non-static caloron
(close constituents).



A Q = 2 caloron on a 203 × 4 lattice
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Figure 5: Q = 2 caloron: Polyakov loop scatter plot at high action density.
Notice the full number of monopole constituents.
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Figure 6: Q = 2 caloron : Action density (upper left) and magnetic monopoles (upper right);
spectral flow (bottom left) and IPR (bottom right) of the two zero modes.
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Figure 7: A Q = 0 configuration on 123 × 4 : a pair of static embedded SU(2) instan-
ton/antiinstanton.



Properties of cooled ensembles

Covering full moduli space in a finite volume,

role of the ”aspect ratio” Lt/Ls

We have cooled Monte Carlo generated lattice configurations

to the first classical plateau with

|Q| = 1, |Q| = 2, |Q| = 3 and |Q| = 4 (and Q = 0)

123 × 4 at β = 5.65

ensemble A : 6000 configurations,

with cooling stopped for minimal violation of eq. of motion;

ensemble B : 9000 configurations,

with cooling stopped for maximal staticity;

ensemble C : 5000 configurations from ensemble B, violation of

selfduality restricted to δF < 0.1



Other lattice sizes

203 × 4 at β = 5.65 (effect of expanded volume)

ensemble O(200) configurations

123 × 6 (same β) (effect of lower ”temperature”)

ensemble 3500 configurations, reduced 2500 configurations

203 × 6 (same β) (lower ”temperature”, expanded volume)

ensemble O(100) configurations

From the study of SU(2) calorons it was known :

lower ”temperature” → smaller distances between constituents,

stronger overlap, more instanton-like for T → 0

”Recombination of dyons into calorons in SU(2) lattice fields at low

temperatures”, hep-lat/0402010

Classical property, does not reflect T of the hot sample !



Distributions of non-staticity for SU(2) calorons (PRD 69, 114505)
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Figure 8: Getting more instanton-like at lower temperature. Histograms of non-staticity without
cut (left) and with cut (right) restricting holonomy to L ≈ 0. The vertical line marks
the bifurcation into dyon constituents.



Distributions of non-staticity for SU(2) calorons (PRD 69, 114505)
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Figure 9: Histograms of the full sample compared with the subsample with static monopoles at
high T (left) and lower T (right). The vertical line marks the bifurcation into dyon
constituents.



Distributions of non-staticity for SU(3) calorons
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Figure 10: Distribution of non-staticity for various Q, for minimal violation of equations of
motion (left) and for a combined stopping criterion (right). The vertical line marks
the bifurcation of a caloron into constituents.
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Figure 11: The number of monopoles and of discernible lumps versus |Q| = S/Sinst
(upper row).
Multiplicity of monopole constituents for |Q| = 1 and |Q| = 2 (bottom left).
Distance between monopoles correlated with non-staticity (bottom right).



Effect of bigger volume and lower temperature
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Figure 12: Distribution of non-staticity for various Q, compared to 123 × 4 (middle),
for larger volume (left) and for lower temperature (right).



Summary & outlook

• Using cooling, we have systematically studied the characteristic

features of SU(3) calorons at high temperature.

• At T ∼ Tdec they resemble KvBLL calorons, although they are

constructed in a finite volume.

• The monopole structure changes with lower temperature

and/or larger volume.

• This study was restricted to classical configurations.

• In order to detect a caloron dissociation mechanism at the

confinement transition we propose to use, in addition to the

fermionic probes (Gattringer et al.), to study the magnetic

charge content of topological clusters in (moderately APE

smeared) equilibrium configurations.

• Work in this direction is in progress (so far for the SU(2)

confinement transition).


